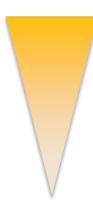


Mikrobiologische Diagnostik

ABS Fellow Kurs - Berlin
Dr. Tassilo Kruis, MHBA
2. November 2021


Agenda

- Wiederholung mikrobiologischer Grundlagen
- Bedeutung von Untersuchungsmaterial und –auftrag
 - Sterile vs. nicht sterile Materialien
- Workflow Blutkulturdiagnostik
 - Einordnung des Gramverhaltens und Rückschlüsse auf mögliche Erreger in Abhängigkeit des vermuteten Fokus
- Erregerspektren
 - Residente Flora oder fakultatives Pathogen
 - Ambulante oder nosokomiale Infektion
 - Syndromisches Testen mit Multiplex-PCRs
- SIR-Klassifikation nach EUCAST

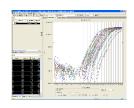
Wozu mikrobiologische Diagnostik?

Optimierung der antimikrobiellen Therapie

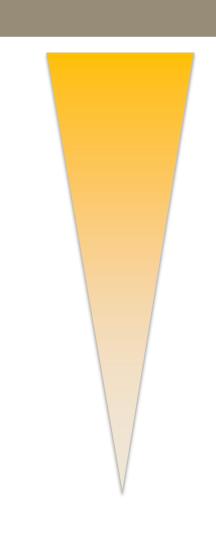
- Morphologie / Gramfärbung
- Speziesidentifizierung
- Empfindlichkeitstestung

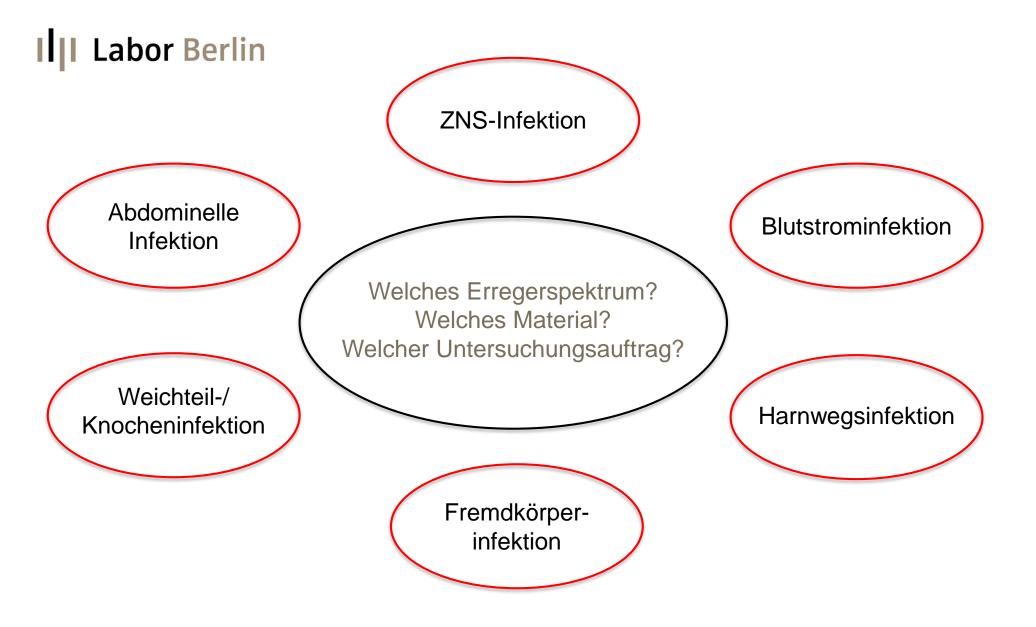
Welche Methoden?

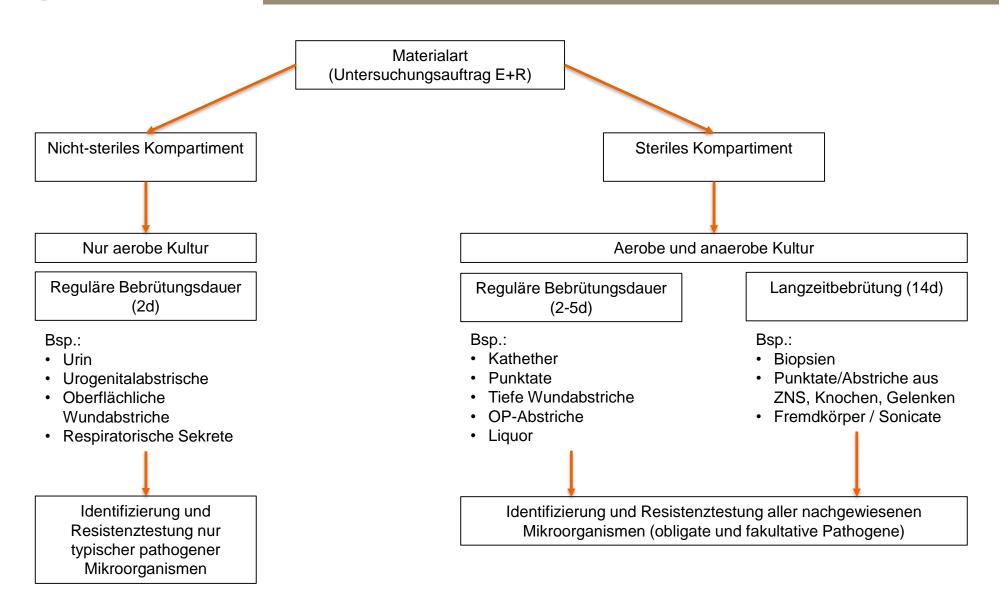
Mikroskopie (Gram-Färbung u.a.)


Serologische Tests (Antigen- und Antikörperdetektion)

Molekulardiagnostik (Einzel-PCR, Multiplex-PCR, Spezies-übergreifende PCR/NGS)


Erregerkultur mit Resistogramm!





Eingesandtes Material und Untersuchungsauftrag bestimmen die im Labor durchgeführte Diagnostik (und damit auch das Untersuchungsergebnis)

Wie das Material den Workflow bestimmt

Oberflächlicher Wundabstrich

nicht steril

keine Hautflora, Anaerobier

Identifizierung/Resistenztestung typischer Wunderreger:

S.aureus

Str.pyogenes u.a. β-hämolysierende Streptokokken

Gram-negative Stäbchen

Bei dominantem Wachstum auch Enterokokken, Bacillus, Corynebakterien

unter sterilen Kautelen

auch Hautflora, Anaerobier

Identifizierung/Resistenztestung aller Bakterien

"Erreger und Resistenzen (E+R)"

Nachweis kulturell wenig anspruchsvoller, schnellwachsender Bakterien und Pilze:

- Staphylokokken
- Streptokokken
- Enterokokken
- Enterobakterien
- Pseudomonas
- Acinetobacter
- Candida
- u.v.m.

Kein sicherer Nachweis von Erregern, die besondere Kulturbedingungen benötigen (z.B. Spezialmedien, längere Bebrütungsdauer)!

III Labor Berlin Gezielte Anforderung nötig bzw. sinnvoll

	Spezial. kultur	PCR	Antigen- nachweis	Antikörper- nachweis	
Gonokokken	Х	Х			
Treponema		(X)		Х	
Borrelia		(X)		X	
Leptospira		Х		X	
Brucella	Х	Х		Х	
Francisella	Х	Х		Х	
H.pylori	Х		Х	(X)	
Legionellen	(X)	Х	Х	(X)	П
Bordetellen		Х		(X)	
Chlamydien		Х		(X)	
Mycoplasmen	(X)	Х		(X)	
Ureaplasmen	(X)	Х			Ц
Coxiellen		(X)		Х	
Mykobakterien	X	Х			
Aktinomyzeten	X				
Nokardien	Х				
T.whipplei		Х			
Cryptokokken	Х	(X)	Х		
Aspergillus	Х	(X)	Х		
Candida	X		(X)		

Fallvignette – primäre Bakteriämie

- Aufnahme eines 76 j\u00e4hrigen Patienten mit Fieber und reduziertem Allgemeinzustand. Bekannte terminale Niereninsuffizienz mit ambulanter Dialyse \u00fcber AV-Shunt.
- Abnahme von Blutkulturen und Beginn einer empirischen Antibiose mit Ceftriaxon 1x 2g i.v.
- Am Folgetag Nachricht von der Pflege, dass die Mikrobiologie angerufen h\u00e4tte. Bei dem Patienten sei S.aureus in mehreren Blutkulturen gewachsen. Zu diesem Zeitpunkt zeigt der Patient allenfalls ein partielles Ansprechen auf die Therapie.
- Was tun Sie als n\u00e4chstes?
 - a) ein transösophageales Echo anmelden
 - b) die Therapie auf Vancomycin i.v. umstellen
 - c) den MRSA-Schnelltest in der Mikrobiologie erfragen
 - d) Folgeblutkulturen abnehmen

Blutkulturdiagnostik

- Bei V.a. bakterielle Infektionen oder Sprosspilzinfektionen
 (bzw. zur Verlaufskontrolle bei S.aureus, Candida und anderen komplizierten Bakteriämien)
- Möglichst vor Antibiotikagabe
- Mindestens 2 BK-Pärchen aus separaten Punktionsstellen
- Ggf. zusätzlich Abnahme aus intravasalen Kathetern (Cave: höhere Kontaminationsrate)
- Wenn möglich 10ml pro Flasche (für Kinder Extraflaschen für geringere Blutvolumina)

Häufigkeit bakteriämischer Verläufe

Endokarditis 80-90%

Meningitis 60-70%

Cholangitis 40-60%

Osteomyelitis 20-50%

Eitrige Arthritis 30-40%

Pyelonephritis 20-30%

Pneumonie 10-15%

Blutkulturen - Sensitivität

Steigt mit zugegebenem Blutvolumen!

Erwartete Sensitivität bei Bakteriämien:

■ 1 BK-Pärchen 70%

2 BK-Pärchen 90%

■ 3 BK-Pärchen > 95%

■ 4 BK-Pärchen > 99%

Zeitpunkt (z.B. im Fieberanstieg) und Abstand zwischen Abnahmen unerheblich.

Bei Endokarditisverdacht bzw. V.a. anspruchsvolle Erreger (z.B. Brucellen) ggf.

verlängerte Bebrütungszeit von 14d.

Blutkultur aerob/anaerob "E+R"

Geeignet (Auswahl) Nicht geeign

Staphylokokken Mycobakterien

Enterokokken Aspergillen

Streptokokken Legionellen

Enterobakterien Mycoplasmen

Nonfermenter Chlamydien

Hämophilus Coxiellen

Meningokokken Bartonellen

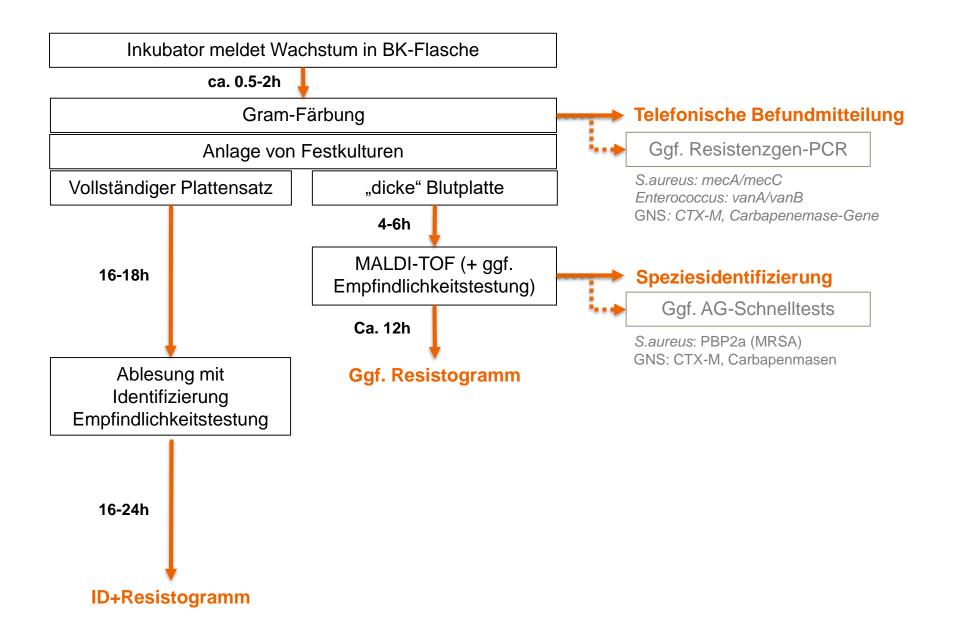
Gonokokken T.whipplei

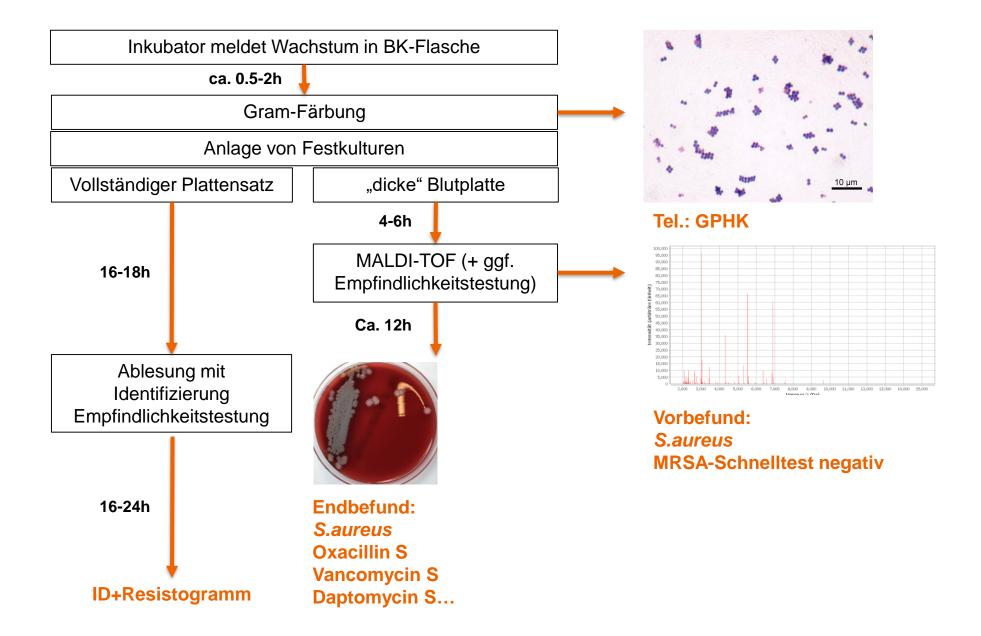
Anaerobier

Candida

Cryptokokken

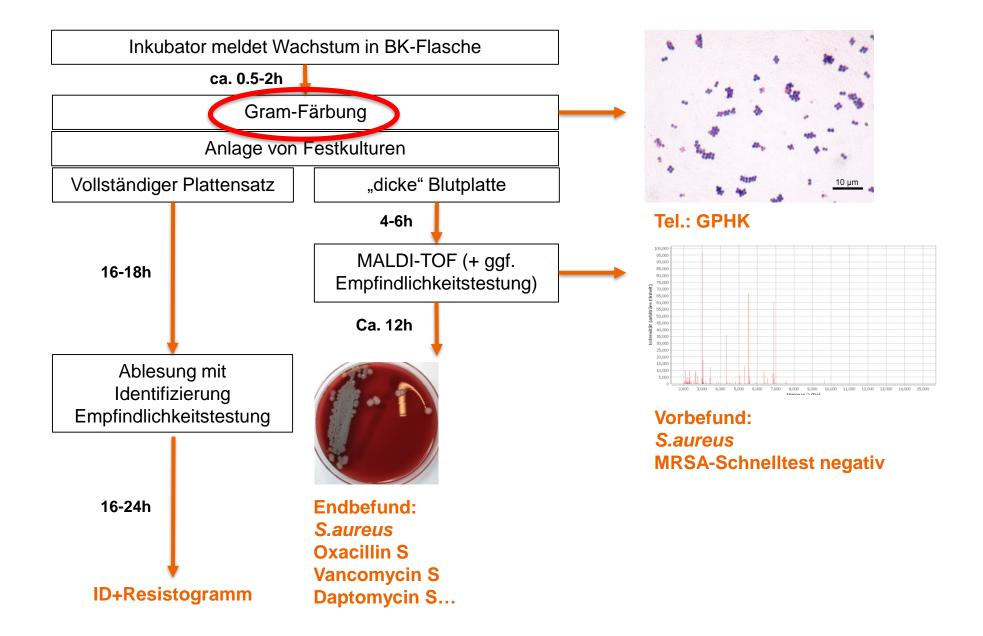
Workflow - Blutkulturdiagnostik





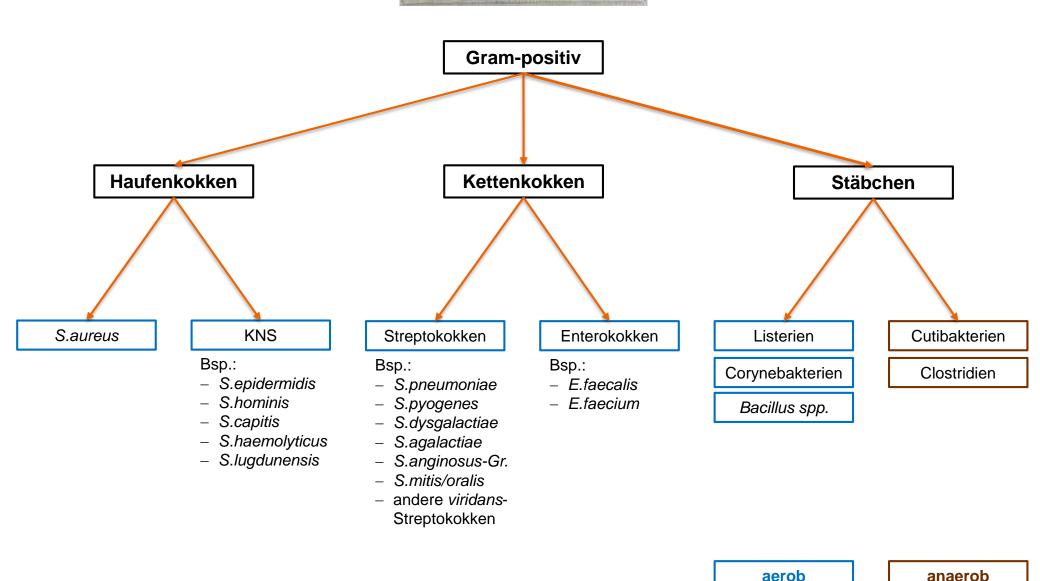
Beispiel – Workflow Blutkulturdiagnostik

Beispiel – Workflow Blutkulturdiagnostik

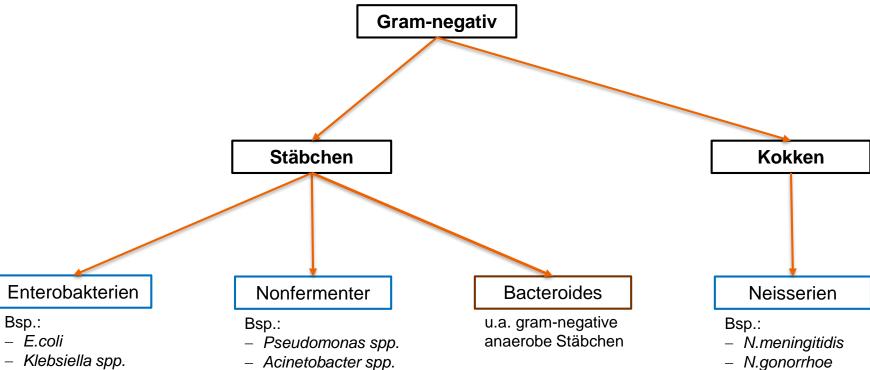

Wichtige Resistenzmechanismen

	E.coli, K.pneumoniae	P.aeruginosa	A.baumannii	
Resistenz	3.GenCephalosporine	Carbapeneme	Carbapeneme	
Mechanismus	in ca. 80% CTX-M	sehr variabel:	OXA-23 u.a. Carbapenemasen	
	extended spectrum β-Laktamasen	Porinveränderungen (i.bes. OprD)		
	Carbapeneme	AmpC-Überexpression		
	in ca. 60-70% Carbapenmasen	Effluxpumpen		
	am häufigsten OXA-48, KPC, NDM, VIM	selten Carbapenemasen (ca. 10%)		
Detektion	PCR, AG-Schnellteste	-	PCR, AG-Schnellteste	

	S.aureus	E.faecium
Resistenz	β-Laktame	Vancomycin
Mechanismus	mecA/C	vanA/vanB
	verändertes PBP2a	veränderte Peptidoglycane
	mit herabgesetzter Bindung	mit herabgesetzter Bindung
Detektion	PCR, AG-Schnellteste	PCR



Beispiel – Workflow Blutkulturdiagnostik


Il|| Labor Berlin

Labor Berlin

- S.maltophilia

- E.coli
- Klebsiella spp.
- Enterobacter spp.
- Citrobacter spp.
- Proteus spp.
- Serratia spp.
- Morganella spp.
- Providencia spp.
- Hafnia spp. u.a.

- N.gonorrhoe

aerob

anaerob

Vanco, (Flucloxacillin)

S. aureus

Amp/Sulbactam, (Vanco)

S. aureus

Amp/Sulbactam, (Vanco)

S. saprophyticus, (S. aureus)

Amp/Sulbactam

S.aureus, (KNS)

Flucloxacillin, (Vanco)

S. aureus

Flucloxacillin (+ Fosfo), (Vanco)

Häufige Erreger – abhängig von Fokus und Gramfärbung –

und <u>mögliche</u> Optionen für die empirische Therapie					
Klinischer Fokus	GP-Haufenkokken	GP-Kettenkokken	GP-Stäbchen	GN-Stäbchen	GN-Kokken
Drimära Sancis	S. aureus	Enterokokken, Streptokokken	L.monocytogenes	Enterobakterien	N.gonorrhoe, N.meningitidis
Primäre Sepsis Fluo	Flucloxacillin, (Vanco)	Vanco, Ampicillin	Ampicllin (+ Genta)	Pip/Tazo, (Meropenem)	Cefotaxim, Ceftriaxon
Neonatale Sepsis	S. aureus	S.agalactiae, (Enterokokken)	L.monocytogenes	E.coli u.a. Enterobakterien, (H.influencae)	-
	Flucloxacillin, (Vanco)	Ampicillin, (Vanco)	Ampicllin (+ Genta)	Pip/Tazo, Cefotaxim	
Katheter, Sonden	KNS, S. aureus	E.faecium	Corynebakterien, B. cereus,	Enterobakterien, <i>P. aeruginosa,</i>	-

Clostridium spp.

Pip/Tazo

C.perfringens

Pip/Tazo (+ Clinda)

L.monocytogenes

Ampicllin (+ Genta)

Vanco

S.pneumoniae

Penicillin, Amp/Sulbactam

Enterokokken

Vanco, Ampicillin

Enterokokken, viridans -

Streptokokken

Vanco, Pip/Tazo S. pyogenes, S. dysgalactiae,

S. agalactiae, (Enterokokken)

Penicllin (+ Clinda), (Vanco)

S.pneumoniae

Cefotaxim/Ceftriaxon

u.a. Fremdkörper

CAP

HAP

Harnwege

Abdomen

Weichteile,

Knochen, Gelenke

ZNS

A.baumannii C.acnes Vanco Meropenem H.influencae, M.catarrhalis Amp/Sulbactam

Enterobakterien, P. aeruginosa

Pip/Tazo, (Meropenem)

Enterobakterien, Bacteroides

spp.

Pip/Tazo, (Meropenem)

Enterobakterien, P. aeruginosa,

Bacteroides u.a. Anaerobier

Pip/Tazo, (Meropenem)

Enterobakterien

Meropenem

Enterobakterien, P. aeruginosa, A.baumannii Pip/Tazo, Meropenem

N.gonorrhoe

Cefotaxim, Ceftriaxon

N.gonorrhoe

Cefotaxim, Ceftriaxon

N.meningitidis

Cefotaxim, Ceftriaxon

https://www.eucast.org/

Bereits die Speziesidentifikation erlaubt Rückschlüsse auf die Empfindlichkeit einzelner Erreger!

Organization

Consultations

EUCAST News

New definitions of S, I and R

Clinical breakpoints and dosing

Rapid AST in blood cultures

Expert rules and intrinsic resistance

Resistance mechanisms

SOPs and Guidance documents

MIC and zone distributions and ECOFFs

European Society of Clinical Microbiology and Infectious Diseases

- Intrinsische Resistenz: der überwiegende Teil der Wildtyp-Isolate einer Spezies sind resistent gegenüber einer Substanz.
- <u>Expert rules</u>: Empfehlungen einzelne Substanzen bei einer Spezies zu vermeiden, da ein erhöhtes Risiko für ein Therapieversagen angenommen wird.

https://www.eucast.org/

Spezies	DON'Ts - Nicht empfohlen	Hintergrund	
Klebsiella spp.	Ampicillin, Piperacillin	Expression von β-Laktamasen	
Raoultella spp.			
Enterobacter spp.	Cefuroxim	AmpC-Derepression	
Klebsiella aerogenes	Ceftriaxon, Cefotaxim, Ceftazidim		
Citrobacter freundii- Gruppe			
Hafnia alvei			
Serratia marcescens	Cefuroxim	erhöhte Cefuroxim-MHKs	
Morganella morganii	Vorsicht bei Ceftriaxon, Cefotaxim, Ceftazidim	Selten AmpC-Derepression	
Providencia spp.	als Monotherapie		
	Tigecyclin	Unzureichende Wirksamkeit	
Pseudomonas aeruginosa	Ceftriaxon, Cefotaxim	AmpC-Expression	
	Ertapenem	Multiple Effluxsysteme	
	Tigecyclin	Unzureichende Wirksamkeit	
Acinetobacter baumannii- Gruppe	Amoxicillin/Clavulansäure,	Expression verschiedener β-Laktamasen	
	Ceftriaxon, Cefotaxim		
	Ertapenem		
Stenotrophomonas maltophilia	Ampicillin/Sulbactam, Piperacillin/Tazobactam	Expression von Metallo-β-Laktamasen	
	Ceftriaxon, Cefotaxim		
	Meropenem, Imipenem, Ertapenem		

https://www.eucast.org/

Spezies	DOs - i.d.R. wirksame emprirische Therapie
Klebsiella spp.	Ceftriaxon, Cefotaxim
Raoultella spp.	
Enterobacter spp.	Meropenem
Klebsiella aerogenes	(Piperacillin/Tazobactam?, Cefepim?)
Citrobacter freundii- Gruppe	
Hafnia alvei	
Serratia marcescens	Meropenem
Morganella morganii	(Piperacillin/Tazobactam?, Cefepim?)
Providencia spp.	
Pseudomonas aeruginosa	Piperacillin/Tazobactam, Ceftazidim,
	Meropenem
Acinetobacter baumannii- Gruppe	Meropenem
Stenotrophomonas maltophilia	Cotrimoxazol

https://www.eucast.org/

Spezies	DON'Ts - Nicht empfohlen	Hintergrund
Staphylococcus aureus	Penicillin, Ampicillin	Expression von Penicillinasen
Koagulase-neg. Staphylococcus spp.	β-Laktame	Expression von PBP2a
Enterococcus spp.	Cephalosporine	Geringe Affinität zu Penicillin-Bindeproteinen
	Meropenem	
Enterococcus faecium	β-Laktame	Expression von PBP5r
Listeria monocytogenes	Cephalosporine	Geringe Affinität zu Penicillin-Bindeproteinen

Spezies	DOs - i.d.R. wirksame emprirische Therapie		
Staphylococcus aureus	Flucloxacillin, Ampicillin/Sulbactam,		
	Cefazolin		
Koagulase-neg. Staphylococcus spp.	Vancomycin		
Enterococcus spp. (nicht E.faecium)	Ampicillin, Piperacillin, Imipenem		
Enterococcus faecium	Vancomycin		
Listeria monocytogenes	Ampicillin		

Fallvignette - Aspirationspneumonie

- Alkohol- und Nikotinabhängiger Patient vom Notarzt hypoton und tachypnoeisch vorgefunden
- Röntgenologisch Infiltrat im rechten Unterlappen
- Empirische Therapie: Piperacillin/Tazobactam 4x4.5g als prolongierte Infusion
- Mikrobiologischer Befund "Tracheobronchialsekret" (eigentlich im Schockraum tief nasopharyngeal abgesaugt)
 - Gramfärbung: reichlich Leukozyten, reichlich gram-positive Kokken, reichlich gram-negative Stäbchen
 - Erreger:

Keim 1: mäßig S.aureus; Oxacillin S (0.5mg/l), Cefoxitin-Screen neg., Vanco S, Clinda S, Cotrim S, Levofloxacin S, Doxy S)

Text zur Kultur: reichliches Wachstum oropharyngealer Flora

Frage: Anpassung der Antibiose nach mikrobiologischem Befund bei klinischem Ansprechen auf die Therapie?

- a) Piperacillin/Tazobactem weiter
- b) Deeskalation auf Flucloxacillin
- c) Deeskalation auf Ampicillin/Sulbactam
- d) eine andere empfindliche Substanz

Pathogen oder Flora?

- Unterschiedliche Mikroorganismen (Bakterien, Pilze, Viren) Haut und Schleimhäute des gesunden Menschen
- Unterscheidung in
 - permanente (residente) Flora
 - temporäre (transiente) Flora
 - Kontamination (Anflugkeime)
 - → Finden sich gleichermaßen im Probenmaterial wie Pathogene
- Unterscheidung zwischen
 - Symbionten
 - fakultativen Pathogenen abhängig vom klinischen Kontext (Material, Krankheitsbild, Immunstatus u.a.)
 - obligaten Pathogenen

Mundrachenflora oder Pathogen?

Fakultativ pathogen (Auswahl)

Streptococcus pneumoniae

Streptococcus pyogenes

Streptococcus anginosus

Streptococcus constellatus

Streptococcus intermedius

Staphylococcus aureus

Haemohilus influencae

Moraxella catarrhalis

Enterobacterales

Pseudomonas aeruginosa

Actinomyces spp.

Gram-positive anaerobe Kokken

Gram-negative anaerobe Stäbchen

Eigentlich immer getestet

Streptococcus pneumoniae

Streptococcus pyogenes

Staphylococcus aureus

Haemohilus influencae

Moraxella catarrhalis

Pseudomonas aeruginosa

Enterobacterales

(bei dominierendem Wachstum)

Streptococcus anginosus

Streptococcus constellatus

Streptococcus intermedius

Meist gar nicht kultiviert

Fusobacterium spp.

(i.bes. F.necrophorum)

Peptostreptococcus spp.

Prevotella spp.

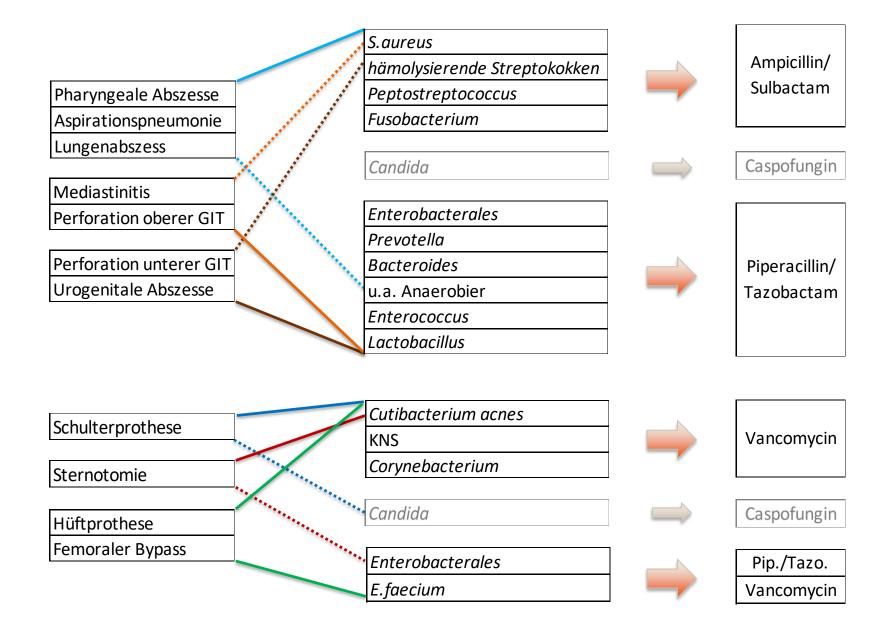
Actinomyces spp.

und viele Anaerobier mehr

unter "oropharyngeale Flora" subsummiert

aerob

anaerob


Wann sollte die Flora berücksichtigt werden – auch wenn im Befund nicht ausgetestet?

Bei Verschleppung oder Barrierestörung wie

- Aspiration
- Perforation eines Hohlorgans
- Eröffnung von Gelenken und offenen Frakturen
- Einbringen von Fremdmaterial

Mit welchen (fakultativen) Pathogenen muss gerechnet und wie könnten sie empirisch berücksichtigt werden?

Erregerspektrum im Wandel der Liegezeit (bzw. Antibiotikatherapie)

Respiration strakt

Abdomen

Harnwege

Wunden

S. pneumoniae

H.influencae

M.catarrhalis

Viren

Enterobacterales

Enterococcus spp.

Streptococcus spp.

Anaerobier

Enterobacterales

Enterococcus spp.

S.aureus

S. pyogenes

S. dysgalactiae

Enterobacterales

P.aeruginosa

S.aureus

S.pneumoniae

H.influencae

Enterobacterales

E.faecium

Candida spp.

Enterobacterales

E.faecium

P.aeruginosa

S.aureus

Enterobacterales

P.aeruginosa

Enterobacterales (MRGN)

P.aeruginosa (MRGN)

A.baumannii (MRGN)

S.aureus (MRSA)

S.maltophilia

Enterobacterales (MRGN)

E.faecium (VRE)

Candida spp. (non-albicans)

Enterobacterales (MRGN)

P.aeruginosa (MRGN)

A.baumannii (MRGN)

E.faecium (VRE)

Enterobacterales (MRGN)

P.aeruginosa (MRGN)

A.baumannii (MRGN)

S.aureus (MRSA)

S.maltophilia

Erregerspektrum im Wandel der Liegezeit (bzw. Antibiotikatherapie)

Respirationstrakt	S.pneumoniae	Enterobacterales	•	Enterobacterales (MRGN)
	H.influencae	P. aeruginosa		P.aeruginosa (MRGN)
	M.catarrhalis	S.aureus		A.baumannii (MRGN)
	Viren	S. pneumoniae		S.aureus (MRSA)
		H.influencae		S.maltophilia
Abdomen	Enterobacterales	Enterobacterales		Enterobacterales (MRGN)
	Enterococcus spp.	E.faecium		E.faecium (VRE)
	Streptococcus spp.	Candida spp.		Candida spp. (non-albicans)
	Anaerobier			
Harnwege	Enterobacterales	Enterobacterales		Enterobacterales (MRGN)
	Enterococcus spp.	E.faecium		P.aeruginosa (MRGN)
		P. aeruginosa		A.baumannii (MRGN)
				E.faecium (VRE)
Wunden	S. aureus	S. aureus		Enterobacterales (MRGN)
	S. pyogenes	Enterobacterales		P.aeruginosa (MRGN)
	S. dysgalactiae	P. aeruginosa		A.baumannii (MRGN)
				S.aureus (MRSA)
				S. maltophilia

Fallvignette – atypische Pneumonie

- 70 jähriger, kachektischer Patient mit respiratorischer Insuffizienz
- Röntgenologisch Bild einer atypischen Pneumonie
- Empirische Therapie: Moxifloxacin 400mg/d i.v.
- Mikrobiologie:
 - TBS: kein Wachstum bzw. geringes Wachstum von oropharyngealer Flora
 - Legionella-AG (Urin): 1x negativ
- Im Verlauf partielles Ansprechen auf Moxifloxacin, abgesetzt nach 10d. Wenige Tage später erneute respiratorische Verschlechterung
- Was nun?
 - a) Moxifloxacin wieder ansetzen
 - b) TBS und BKs abnehmen und Pip/Tazo 4x4.5g prolongiert ansetzen
 - c) Diagnostik atypischer und viraler Erreger erweitern
 - d) CT Hals-Thorax-Abdomen-Becken zur Fokussuche veranlassen

Fallvignette – atypische Pneumonie

- Erweiterte Infektionsdiagnostik:
 - PJP-IFT (BAL): negativ
 - Aspergillus-AG (BAL, Serum): negativ
 - Legionellen-AG (Urin): negativ
 - Respiratorische Multiplex-PCR: Bocavirus positiv
- Verlauf:
 - Moxifloxacin erneut begonnen, nach PCR-Ergebnis wieder abgesetzt
 - Prednisolonstoßtherapie (500-250-250mg über 3d)
 - Langsame Besserung und erfolgreiches Weaning ohne erneute Antibiotikatherapie

Syndromisches Testen

- Gleichzeitiges Testen auf Erreger mit überlappendem Krankheitsbild in einem Untersuchungsauftrag
- Untersuchungspanel sollte h\u00e4ufige/ besonders wichtige (nicht-kultivierbare) Erreger umfassen
- Häufigstes Testverfahren:
 - Multiplex-Plex-PCR = mehrere speziesspezifische PCRs in einem Untersuchungsansatz
- Kommerzielle Panels verfügbar für:
 - Meningitis/Encephalitis
 - Respiratorische Infektionen
 - Gastroenteritis

Beispiel – Respiratorisches Panel

Viral Targets		
Influenza A	Respiratory Syncytial Virus A	SARS-CoV-2
Influenza B	Respiratory Syncytial Virus B	Coronavirus HKU1
Rhinovirus/Enterovirus	Parainfluenza virus 1	Coronavirus NL63
Adenovirus	Parainfluenza virus 2	Coronavirus 229E
Human Metapneumovirus	Parainfluenza virus 3	Coronavirus OC43
Human Bocavirus	Parainfluenza virus 4	
Bacterial Targets		
Chlamydophila pneumoniae	Mycoplasma pneumoniae	Legionella pneumophila

- 20 Erreger (ambulanter!) Atemwegsinfekte in einem Ansatz
- Zusätzlich zur kulturellen Erregerdiagnostik (E+R) kein Ersatz!
- Cave: Kosten und Überdiagnostik

Beispiel – kommerzielles Meningitis/Encephalitis Panel

Erreger	Risikogruppe
S.agalactiae	Neonaten
S.pneumoniae	-
N.meningitidis	-
H.influencae	-
L.monocytogenes	Immunsuppremierte
E.coli K1	Neonaten
Enterovirus	-
HSV1	-
HSV2	-
CMV	Immunsuppremierte
VZV	-
HHV6	Immunsuppremierte
Parechovirus	Kinder
Cryptococcus	Immunsuppremierte

- 14 Erreger der (ambulanten) Meningitis bzw.
 Encephalitis
- Häufigste Erreger enthalten
- Nur geringes Liquorvolumen (ca. 200µl) nötig
- Kurze Analysedauer (ca. 1h)

Kommerzielles Meningitis/Encephalitis Panel – Performance

Erreger	Erwartet	Gemessen	Übereinstimmung
S.agalactiae	2	3	100%
S.pneumoniae	27	30	100%
N.meningitidis	10	10	100%
H.influencae	40	39	98%
L.monocytogenes	0	1	-
E.coli K1	1	1	100%
Enterovirus	43	41	95%
HSV1	26	20	77%
HSV2	55	49	89%
CMV	3	3	100%
VZV	29	30	100%
HHV6	5	7	100%
Parechovirus	0	0	-
Cryptococcus	50	26	52%
Bakterien	80	78	98%
Viren	161	145	90%

Liesman RM, J Clin Microbiol, 2018

- Untersuchung von Liquores mit bekanntem Erreger
- Bei HSV1/2 Übereinstimmung in <90%
- In Einzelfällen Mehrfachinfektionen mit ZNS-Panel diagnostiziert
- Selten falsch-positive Ergebnisse, am häufigsten S.pneumoniae, S.agalactiae
- Cave Cryptokokken: geringere Sensitiviät als Cryptokokken-AG

Fazit:

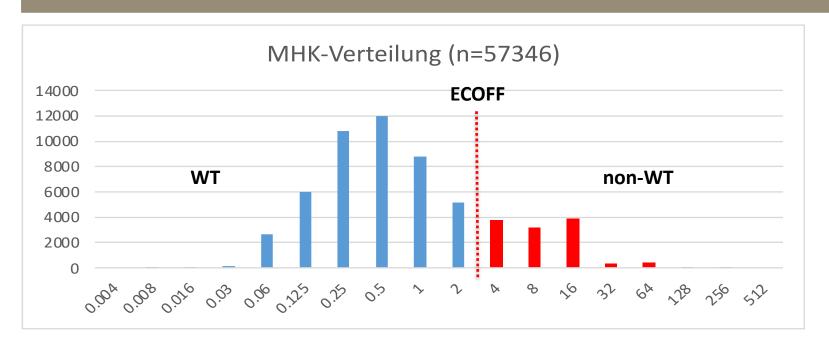
- gute Ergänzung zur Kultur!
- bei HSV-Verdacht ggf. Einzel-PCR wiederholen
- bei Cryptokokkenverdacht immer AG-Nachweis aus Liquor!

Erregerspektrum beachten – unnötige Diagnostik vermeiden

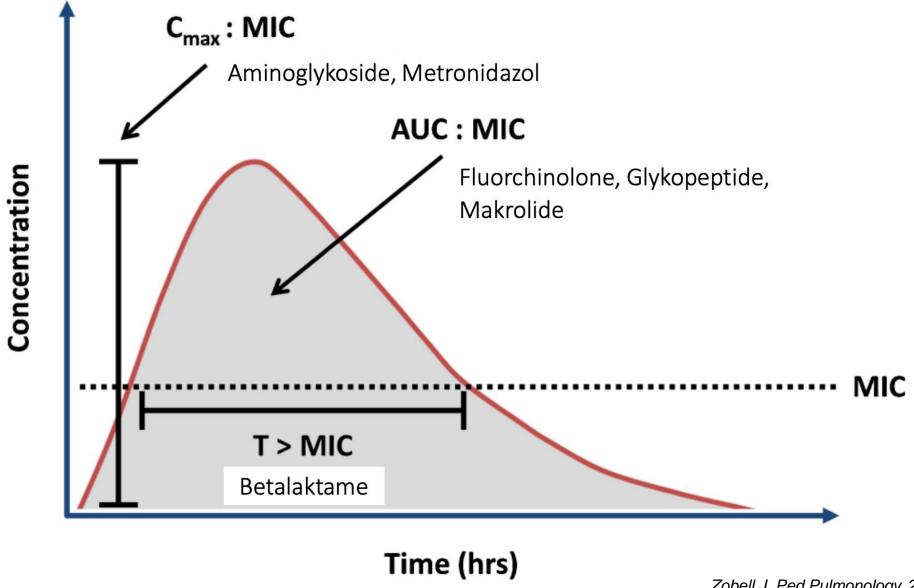
- Triviales Beispiel nosokomial erworbene Diarrhoe
 - Klassische Enteritis-Erreger wie Salmonella, Shigella, Campylobacter, Yersinia spielen kaum eine Rolle
 - In erster Linie ursächlich
 - C.difficile
 - Norovirus

S R – Bewertung von Antibiotika

- Spezifische Bewertung für einzelne Erreger-Substanz-Paare
- Kategorien:
 - S sensibel bei Standardexposition: Hohe Wahrscheinlichkeit für therapeutischen Erfolg bei Standarddosierung der Substanz
 - I sensibel bei erhöhter Exposition (engl. *increased exposure*): Hohe Wahrscheinlichkeit für therapeutischen Erfolg bei hoher Dosierung der Substanz
 - R resistent: hohe Wahrscheinlichkeit für therapeutisches Versagen auch bei hoher Dosierung
- Festsetzung der Grenzwerte (engl. break points) durch EUCAST nach
 - Empfindlichkeitsverteilung des Erregers
 - pharmakokinetischen/ pharmakodynamischen (PK/PD) Betrachtungen
 - klinischen Daten zum Therapieansprechen

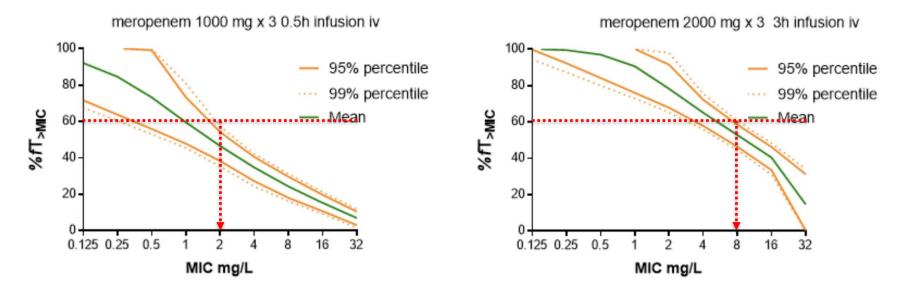

Beispiel – Pseudomonas aeruginosa

	MHK (mg/L)		
Piperacillin	-	≤4	
Pip/Tazobactam	ı	≤4	
Ceftazidim	ı	≤1	
Cefepim	1	≤1	
Meropenem	S	≤0.25	
Imipenem	ı	≤0.25	
Ciprofloxacin	I	≤0.25	

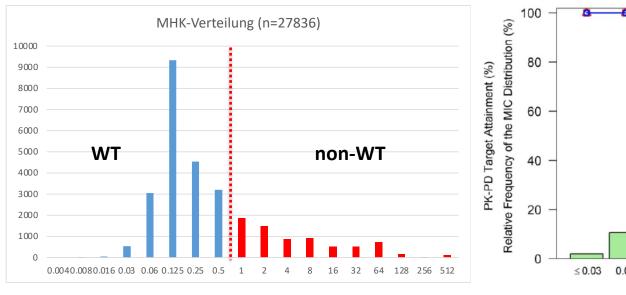

Für die meisten Substanzen auch bei niedrigen MHKs erhöhte Dosierung empfohlen

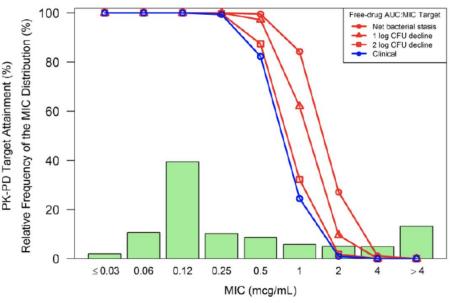
Minimale Hemmkonzentration (MHK): niedrigste Konzentration einer Substanz, bei der keine Vermehrung des Erregers mehr detektiert werden kann.

P.aeruginosa - Meropenem



- Wildtyp(WT)-Population: kein erworbener oder durch Mutation entstandener Resistenzmechanismus
- Non-WT-Population: erhöhte MHK durch erworbene oder durch Mutation neu enstandene Resistenzmechanismen


Zobell J, Ped Pulmonology, 2012


PK/PD – Meropenem

- Pharmakodynamischer Zielwert für bakteriziden Effekt (T>MHK ca. 60%) erreichbar mit
 - Standarddosis 3x1g über 0.5h bis MHK = 2mg/L
 - erhöhter Dosierung 3x2g über 3h bis MHK = 8mg/L
- In Zusammenschau von MHK-Verteilung, PK/PD-Simulationen und klinischen Daten Beurteilung der Empfindlichkeit mit S (≤2mg/L), I(>2 bis ≤8mg/L) und R (>8mg/L)

P.aeruginosa - Ciprofloxacin

- Erreichen einer AUC:MIC, die mit klinischem Erfolg assoziiert ist, nur mit hoher Dosierung von 3x400mg i.v. oder 2x750mg p.o. bis MHK = 0.5 mg/L erreichbar
- Folglich für Paeruginosa und Ciprofloxacin Beurteilung der Empfindlichkeit nur mit I / R
 (kein S)

Hilfreiche *online*-Ressource – https://www.eucast.org/clinical_breakpoints/

Organization

Consultations

EUCAST News

New definitions of S, I and R

Clinical breakpoints and dosing

About "Clinical breakpoints".

Splitting MIC wild type distributions
When there are no breakpoints?

Where clinical data is lacking!

EUCAST setting breakpoints.

Rapid AST in blood cultures

Expert rules and intrinsic resistance

Resistance mechanisms

SOPs and Guidance documents

European Society of Clinical Microbiology and Infectious Diseases

Clinical breakpoints - breakpoints and guidance

weiter unten auf der website

- Clinical breakpoints bacteria (v 11.0) file for printing (1 Jan, 2021). Also, see clarification on Staphylococci below.
- Clinical breakpoints bacteria (v 11.0) file for screen (1 Jan, 2021). Also, see clarification on Staphylococci below.
- Clinical breakpoints fungi
- Dosages (v 11.0) file for printing and screen (1 Jan, 2021)

Vielen Dank für Ihre Aufmerksamkeit!

Anmerkungen & Kritik gerne an tassilo.kruis@laborberlin.com

Dr. med. Tassilo Kruis, MHBA

Facharzt für Innere Medizin Arzt in Weiterbildung für Mikrobiologie, Virologie und Infektionsepidemiologie ABS-Experte (DGI)

Fachbereich Mikrobiologie & Hygiene Labor Berlin – Charité Vivantes GmbH